

M. Naeem Khan^{1,2}, A. K. Azad³, Peter Hing¹, J.T.S. Irvine⁴ ¹Centre of Advanced Materials and Energy, University Brunei Darussalam, Jalan Tunku Link, Gadong, Brunei Darussalam ²Department of Physics, BUITEMS, Takatu Campus Quetta, Pakistan ³Faculty of Integrated Technologies, University Brunei Darussalam, Jalan Tunku Link, Gadong, Brunei Darussalam ⁴Centre for Advanced Materials, School of Chemistry, University of St Andrews, Fife KY16 9ST, United Kingdom Corresponding Email: Mohammad.Naeem1@buitms.edu.pk

Abstract—Proton conducting oxide $BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-\delta}$ was processed via solid state reaction method. Rietveld analysis confirmed tetragonal symmetry with a=b=6.2190(0), c=8.8034(4), and V=340.491Å³. A very high relative density of 99.20% was achieved for ZnO-added BZCYYb after sintering at 1350°C. The maximum ionic conductivity was $13.25x10^{-3}$ S cm⁻¹ at 600°C in wet 5 vol% H₂/Ar environment. The chemical stability of ZnO-added in pure (100%) CO₂ was roughly enhanced by 200% than the blank sample; however, some small peaks of BaCO₃ and CeO₂ were observed in their XRD pattern. Nonetheless, ZnO-added BZCYYb with above properties is an attractive potential electrolyte material for practical applications.

Keywords—Proton Conducting Oxide, Sintering Additive, Relative Density, Ionic Conductivity, Chemical Stability